Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
If the definitions of type I and type II regions is the same as in the link provided, then as a type I region the integration domain is the set
[tex]R_{\rm I} = \left\{(x,y) \mid 0 \le x \le 3 \text{ and } \sqrt{x+1} \le y \le 2\right\}[/tex]
and as a type II region,
[tex]R_{\rm II} = \left\{(x,y) \mid 0 \le x \le y^2-1 \text{ and } 1 \le y \le 2\right\}[/tex]
where we solve y = √(x + 1) for x to get x as a function of y.
A. The area of the type I region is
[tex]\displaystyle \iint_{R_{\rm I}} dA = \int_0^3 \int_{\sqrt{x+1}}^2 dy \, dx = \int_0^3 (2 - \sqrt{x+1}) \, dx = \boxed{\frac43}[/tex]
B. The area of the type II region is of course also
[tex]\displaystyle \iint_{R_{\rm II}} dA = \int_1^2 \int_0^{y^2-1} dx \, dy = \int_1^2 (y^2-1) \, dy = \boxed{\frac43}[/tex]
I've attached a plot of the type II region to give an idea of how it was determined. The black arrows indicate the domain of x as it varies from the line x = 0 (y-axis) to the curve y = √(x + 1).
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.