At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
taking a close look at the graph hmmm we can see that it has roots or solutions at -4 and 5, however, let's notice something, the graph touches the x-axis at -4 and 5 but it doesn't cross it, it simply bounces off of it, which means those roots have an even multiplicity, hmmm let's give it say 2. Let's also notice the graph has a y-intercept at hmm 100, so the graph passes through (0 , 100).
[tex]\begin{cases} x=-4\implies &x+4=0\\\\ x=5\implies &x-5=0 \end{cases}\implies y=a\stackrel{"2" multiplicity}{(x+4)^2 (x-5)^2} \\\\\\ \textit{we also know} \begin{cases} x=0\\ y=100 \end{cases}\implies 100=a(0+4)^2 (0+5)^2 \\\\\\ 100=a(16)(25)\implies \implies \cfrac{100}{(16)(25)}=a\implies \cfrac{1}{4}=a \\\\[-0.35em] ~\dotfill\\\\ ~\hfill y=\cfrac{1}{4}(x+4)^2 (x-5)^2~\hfill[/tex]
Check the picture below.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.