Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answer:
cost of a doughnut is $0.75
cost of a cookie is $0.60
Step-by-step explanation:
As you wrote:
Let x = doughnuts
Let y = cookies
The first sentence of the problem (alexandra) can be written as:
[tex]2x + 3y = 3.30[/tex]
The second sentence of the equation (briana) can be written as:
[tex]5x + 2y = 4.95[/tex]
We must now solve for either [tex]x[/tex] or [tex]y[/tex] in this system of equations.
I will solve for [tex]x[/tex] in this example.
First we need to multiply the first equation by [tex]2[/tex] and the second equation by [tex]3[/tex]. This is so both equations have [tex]6y[/tex] as a term.
Equation 1:
[tex]2(2x + 3y) = (3.30)2\\4x + 6y = 6.60[/tex]
Equation 2:
[tex]3(5x + 2y) = (4.95)3\\15x+6y=14.85[/tex]
Now that both equations have [tex]6y[/tex] as a term, we can subtract Equation 1 from Equation 2. This will remove y from the equation and allow us to solve for x.
[tex](15x+6y) - (4x+6y) = (14.85) - (6.60)\\11x = 8.25\\\boxed{x = 0.75}[/tex]
We now know the cost of a doughnut is $0.75. Now we can solve for the cost of a cookie through substitution.
[tex]2x + 3y = 3.30\\2(0.75) + 3y = 3.30\\1.50 + 3y = 3.30\\3y = 1.80\\\boxed{y = 0.6}[/tex]
Now we know the cost of a cookie is $0.60.
These are the answers,
- Kan Academy Advance
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.