At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Line segment pr is a directed line segment beginning at p(-10,7) and ending at r(8,-5). find point q on the line segment pr that partitions it into the segments pq and qr in the ratio 4:5.

Sagot :

[tex]\textit{internal division of a line segment using ratios} \\\\\\ P(-10,7)\qquad R(8,-5)\qquad \qquad \stackrel{\textit{ratio from P to R}}{4:5} \\\\\\ \cfrac{P\underline{Q}}{\underline{Q} R} = \cfrac{4}{5}\implies \cfrac{P}{R} = \cfrac{4}{5}\implies 5P=4R\implies 5(-10,7)=4(8,-5)[/tex]

[tex](\stackrel{x}{-50}~~,~~ \stackrel{y}{35})=(\stackrel{x}{32}~~,~~ \stackrel{y}{-20})\implies Q=\underset{\textit{sum of the ratios}}{\left( \cfrac{\stackrel{\textit{sum of x's}}{-50 +32}}{4+5}~~,~~\cfrac{\stackrel{\textit{sum of y's}}{35 -20}}{4+5} \right)} \\\\\\ Q=\left( \cfrac{-18}{9}~~,~~\cfrac{15}{9} \right)\implies Q=\left( -2~~,~~\cfrac{5}{3} \right)[/tex]