At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

A principal of $3200 is invested at 7.75% interest, compounded annually. How much will the investment be worth after 13 years?

Sagot :

[tex]~~~~~~ \textit{Compound Interest Earned Amount} \\\\ A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill &\$3200\\ r=rate\to 7.75\%\to \frac{7.75}{100}\dotfill &0.0775\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{annually, thus once} \end{array}\dotfill &1\\ t=years\dotfill &13 \end{cases} \\\\\\ A=3200\left(1+\frac{0.0775}{1}\right)^{1\cdot 13}\implies A=3200(1.0775)^{13}\implies A\approx 8444.51[/tex]