Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Answer:
[tex]\displaystyle f(x) = 3x^2 + 2x + 5\text{ and } g(x) =2x^2 - 4x -2\text{ or } \\ \\ f(x) = 3x^2 + 5 \text{ and } g(x) = x^2 - 4x -2[/tex]
Step-by-step explanation:
We are given the two functions:
[tex]\displaystyle f(x) = 3x^2 + mx +5 \text{ and } g(x) = nx^2 - 4x -2[/tex]
And that:
[tex]\displaystyle h(x) = f(x)\cdot g(x)[/tex]
With the given conditions that (1, -40) and (-1, 24) satisfy the new function, we want to determine functions f and g.
First, find h:
[tex]\displaystyle \begin{aligned} h(x) & = f(x)\cdot g(x) \\ \\ & = (3x^2 + mx +5)(nx^2 - 4x -2) \end{aligned}[/tex]
Because (1, -40) and (-1, 24) are points on the graph of h, we have that h(-1) = 40 and h(-1) = 24. In other words:
[tex]\displaystyle \begin{aligned} h(1) = -40 & = (3(1)^2 + m(1) +5)(n(1)^2 - 4(1) -2) \\ \\ & = (3 + m +5)(n-4 -2) \\ \\ & = (m+8)(n-6) \\ \\ -40 &= mn-6m+8n-48 \end{aligned}[/tex]
And:
[tex]\displaystyle \begin{aligned} h(-1) = 24 & = (3(-1)^2 + m(-1) +5)(n(-1)^2 -4(-1) -2) \\ \\ & = (3 - m +5)(n + 4 -2) \\ \\ & = (-m+8)(n+2) \\ \\ 24 & = -mn -2m + 8n +16 \end{aligned}[/tex]
Solve the system of equations. Adding the two equations together yield:
[tex]\displaystyle -16 = -8m+16n - 32[/tex]
Solve for either m or n:
[tex]\displaystyle \begin{aligned} -16 & = -8m + 16n - 32 \\ \\ 16 & = -8m + 16n \\ \\ 8m & = 16n - 16 \\ \\ m & = 2n -2\end{aligned}[/tex]
Substitute this into one of the two equations above and solve:
[tex]\displaystyle \begin{aligned} -40 & = mn - 6m + 8n - 48 \\ \\ 0 & = (2n-2)n -6 (2n-2) + 8n -8 \\ \\ &= (2n^2 - 2n) + (-12n + 12) +8 n - 8 \\ \\ & = 2n^2 -6n + 4 \\ \\ & = n^2 - 3n + 2 \\ \\ &= (n-2)(n-1) \\ \\ & \end{aligned}[/tex]
Therefore:
[tex]\displaystyle n = 2 \text{ or } n = 1[/tex]
Solve for m:
[tex]\displaystyle \begin{aligned}m &= 2n-2 & \text{ or } m & = 2n-2 \\ \\ & = 2(2) - 1 &\text{ or } & =2(1) -2 \\ \\ &= 2 &\text{ or } & = 0 \end{aligned}[/tex]
Hence, the values of n and m are either: 2 and 2, respectively; or 1 and 0, respectively.
In conclusion, functions f and g are:
[tex]\displaystyle f(x) = 3x^2 + 2x + 5\text{ and } g(x) =2x^2 - 4x -2\text{ or } \\ \\ f(x) = 3x^2 + 5 \text{ and } g(x) = x^2 - 4x -2[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.