Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
The length of the curve [tex]y = \frac{1}{27}(9x^2 + 6)^\frac 32[/tex] from x = 3 to x = 6 is 192 units
How to determine the length of the curve?
The curve is given as:
[tex]y = \frac{1}{27}(9x^2 + 6)^\frac 32[/tex] from x = 3 to x = 6
Start by differentiating the curve function
[tex]y' = \frac 32 * \frac{1}{27}(9x^2 + 6)^\frac 12 * 18x[/tex]
Evaluate
[tex]y' = x(9x^2 + 6)^\frac 12[/tex]
The length of the curve is calculated using:
[tex]L =\int\limits^a_b {\sqrt{1 + y'^2}} \, dx[/tex]
This gives
[tex]L =\int\limits^6_3 {\sqrt{1 + [x(9x^2 + 6)^\frac 12]^2}\ dx[/tex]
Expand
[tex]L =\int\limits^6_3 {\sqrt{1 + x^2(9x^2 + 6)}\ dx[/tex]
This gives
[tex]L =\int\limits^6_3 {\sqrt{9x^4 + 6x^2 + 1}\ dx[/tex]
Express as a perfect square
[tex]L =\int\limits^6_3 {\sqrt{(3x^2 + 1)^2}\ dx[/tex]
Evaluate the exponent
[tex]L =\int\limits^6_3 {3x^2 + 1} \ dx[/tex]
Differentiate
[tex]L = x^3 + x|\limits^6_3[/tex]
Expand
L = (6³ + 6) - (3³ + 3)
Evaluate
L = 192
Hence, the length of the curve is 192 units
Read more about curve lengths at:
https://brainly.com/question/14015568
#SPJ1
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.