Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
The length of the curve [tex]y = \frac{1}{27}(9x^2 + 6)^\frac 32[/tex] from x = 3 to x = 6 is 192 units
How to determine the length of the curve?
The curve is given as:
[tex]y = \frac{1}{27}(9x^2 + 6)^\frac 32[/tex] from x = 3 to x = 6
Start by differentiating the curve function
[tex]y' = \frac 32 * \frac{1}{27}(9x^2 + 6)^\frac 12 * 18x[/tex]
Evaluate
[tex]y' = x(9x^2 + 6)^\frac 12[/tex]
The length of the curve is calculated using:
[tex]L =\int\limits^a_b {\sqrt{1 + y'^2}} \, dx[/tex]
This gives
[tex]L =\int\limits^6_3 {\sqrt{1 + [x(9x^2 + 6)^\frac 12]^2}\ dx[/tex]
Expand
[tex]L =\int\limits^6_3 {\sqrt{1 + x^2(9x^2 + 6)}\ dx[/tex]
This gives
[tex]L =\int\limits^6_3 {\sqrt{9x^4 + 6x^2 + 1}\ dx[/tex]
Express as a perfect square
[tex]L =\int\limits^6_3 {\sqrt{(3x^2 + 1)^2}\ dx[/tex]
Evaluate the exponent
[tex]L =\int\limits^6_3 {3x^2 + 1} \ dx[/tex]
Differentiate
[tex]L = x^3 + x|\limits^6_3[/tex]
Expand
L = (6³ + 6) - (3³ + 3)
Evaluate
L = 192
Hence, the length of the curve is 192 units
Read more about curve lengths at:
https://brainly.com/question/14015568
#SPJ1
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.