Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Answer:
1584
Step-by-step explanation:
The sum of this sequence can be found a number of ways. One way is to recast it as the series whose terms are groups of three terms of the given series.
__
series of partial sums
The partial sums, taken 3 terms at a time, are
1+2-3 = 0
4+5-6 = 3
7+8-9 = 6
...
97+98-99 = 96
So the original series is equivalent to ...
0 +3 +6 +... +96 = 3×1 +3×2 +... +3×32 = 3×(1 +2 +... +32)
That is, the sum is 3 times the sum of the consecutive integers 1..32.
__
consecutive integers
The sum of integers 1..n is given by the equation ...
s(n) = n(n+1)/2
__
series sum
Using this to find the sum of our series, we find it to be ...
series sum = 3 × (32)(33)/2 = 1584
_____
Alternate solution
The given series is the sum of integers 1-99, with 6 times the sum of integers 1-33 subtracted. That is, ...
1 + 2 - 3 + 4 + 5 - 6 = 1+2+3+4+5+6 -2(3 +6) = 1+2+3+4+5+6 -6(1+2)
Continuing on to ...97 +98 -99 gives the result s(99) -6s(33).
Computed that way, we find the sum to be ...
(99)(100)/2 -6(33)(34)/2 = 4950 -3366 = 1584
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.