At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Audrey takes a sheet of paper and makes a diagonal cut from one corner to the opposite
corner, making two triangles. The cut she makes is 87 inches long and the width of the paper
is 60 inches. What is the paper's length?


Sagot :

[tex]\large{\underline{\underline{\pmb{\frak {\color {blue}{Solution:}}}}}}[/tex]

Let us take the width of the paper as base, the cut she made be hypotenuse and the paper's length be perpendicular.

Here,

Hypotenuse (H) = 87 inch

Base (B) = 60 inch

Perpendicular (P) = [To be calculated]

As, we can use Pythagoras theorem to find. So by using Pythagoras theorem :

H² = P² + B²

[tex] {87}^{2} = {P}^{2} + {60}^{2} \\ \\ \implies \: 7569 = {P}^{2} + 3600 \\ \\ \implies \: 7569 - 3600 = {P}^{2} \\ \\ \implies3969 = {P}^{2} \\ \\ \implies \: P = \sqrt{3969} \\ \\ \implies \: P = 63[/tex]

The length of the paper is 63 inches.

[tex] \boxed{ \frak \pink{BrainlyDamurai}}[/tex]

Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.