At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
This is not an identity.
[tex]\dfrac{2(\cos(x)\sin(x) - \sin(x)\cos(2x))}{\sin(2x)} \neq \sec(x)[/tex]
Check x = π/4, for which we have cos(π/4) = sin(π/4) = 1/√2. Together with sin(2•π/4) = sin(π/2) = 1 and cos(2•π/4) = cos(π/2) = 0, the left side becomes 1, while sec(π/4) = 1/cos(π/4) = √2.
Keeping the left side unchanged, the correct identity would be
[tex]\dfrac{2(\cos(x)\sin(x) - \sin(x)\cos(2x))}{\sin(2x)} = -2\cos(x) + 1 + \sec(x)[/tex]
To show this, recall
• sin(2x) = 2 sin(x) cos(x)
• cos(2x) = cos²(x) - sin²(x)
• cos²(x) + sin²(x) = 1
Then we have
[tex]\dfrac{2(\cos(x)\sin(x) - \sin(x)\cos(2x))}{\sin(2x)} = \dfrac{2\cos(x)\sin(x) - 2\sin(x)\cos(2x)}{\sin(2x)} \\\\ = \dfrac{\sin(2x) - 2\sin(x)\cos(2x)}{\sin(2x)} \\\\ = 1 - \dfrac{2\sin(x)\cos(2x)}{\sin(2x)} \\\\ = 1 - \dfrac{2\sin(x)(\cos^2(x) - \sin^2(x))}{2 \sin(x)\cos(x)} \\\\ = 1 - \dfrac{\cos^2(x) - \sin^2(x)}{\cos(x)} \\\\ = 1 - \cos(x) + \dfrac{\sin^2(x)}{\cos(x)} \\\\ = 1 - \cos(x) + \dfrac{1 - \cos^2(x)}{\cos(x)} \\\\ = 1 - \cos(x) + \sec(x) - \cos(x) \\\\ = -2\cos(x) + 1 + \sec(x)[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.