Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let [tex]r_A[/tex] and [tex]r_B[/tex] be the respective radii of balloons A and B. If the fixed total volume is V, then
[tex]V = \dfrac{4\pi}3\left({r_A}^3 + {r_B}^3\right)[/tex]
and knowing [tex]r_A=10\,\rm cm[/tex] and [tex]r_B=9\,\rm cm[/tex] at the start, we have V = 6916π/3 cm³. Then when [tex]r_A=12\,\rm cm[/tex], the radius of the other sphere is [tex]r_B=1\,\rm cm[/tex].
Differentiating both sides with respect to time t gives a relation between the rates of change of the radii:
[tex]0 = 4\pi \left({r_A}^2 \dfrac{dr_A}{dt} + {r_B}^2 \dfrac{dr_B}{dt}\right) \implies \dfrac{dr_B}{dt} = -\left(\dfrac{r_A}{r_B}\right)^2 \dfrac{dr_A}{dt}[/tex]
We're given [tex]\frac{dr_A}{dt} = 0.1\frac{\rm cm}{\rm s}[/tex] the whole time. At the moment [tex]r_A=12\,\rm cm[/tex], the radius of balloon B is changing at a rate of
[tex]\dfrac{dr_B}{dt} = -\left(\dfrac{12\,\rm cm}{1\,\rm cm}\right)^2 \left(0.1\dfrac{\rm cm}{\rm s}\right) = \boxed{-14.4 \dfrac{\rm cm}{\rm s}}[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.