Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

grades are do today please help

Grades Are Do Today Please Help class=

Sagot :

Answer:

length of PR is [tex]4\sqrt{5}[/tex]

Is an isosceles triangle

because PQ is congruent to QR

Step-by-step explanation:

Calculate length of P(-6,0) R(2,4)

=> apply distance formula

[tex]\left(x_1,\:y_1\right),\:\left(x_2,\:y_2\right):\quad \sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}[/tex]

[tex]\sqrt{\left(2-\left(-6\right)\right)^2+\left(4-0\right)^2}[/tex]

[tex]4\sqrt{5}[/tex]

Calculate length of P(-6,0) Q(-3,4)

[tex]\sqrt{\left(-3-\left(-6\right)\right)^2+\left(4-0\right)^2}[/tex]

= 5

5(PQ) = 5(QR)