Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

What is the inverse matrix that can be used to solve this system of equations?
x + 2y + 5z = 14
3x + 5y + 9z = −1
x + y
= 2z = 6
-
O A.
P
-19 9
-2 1
15 -7 6
OB.
T-19 9 -7
15 -7
-2
$3
6
O C.
O D.
0 0
010
L0 0 1J


What Is The Inverse Matrix That Can Be Used To Solve This System Of Equations X 2y 5z 14 3x 5y 9z 1 X Y 2z 6 O A P 19 9 2 1 15 7 6 OB T19 9 7 15 7 2 3 6 O C O D class=

Sagot :

The inverse matrix associated to the system of linear equations described in this question is equal to the matrix [tex]\vec {A}^{-1} = \left[\begin{array}{ccc}-19&9&-7\\15&-7&6\\-2&1&-1\end{array}\right][/tex]. (Correct choice: B)

How to determine the inverse matrix associated to a system of linear equations

A system of linear equations have an unique solution when the number of variables is equal to the number of linear equations. There are several ways to solve a system of three linear equations with three variables, one approach consists in using the concepts of operations between matrices and inverse matrix, for a linear system of the form [tex]\vec A \cdot \vec x = \vec B[/tex] it follows a solution of the form:

[tex]\vec x = \vec {A}^{-1} \cdot \vec B[/tex]     (1)

Where:

  • [tex]\vec A[/tex] - Matrix of dependent constants.
  • [tex]\vec B[/tex] - Matrix of independent constants.
  • [tex]\vec{A}^{-1}[/tex] - Inverse matrix of dependent constants.
  • [tex]\vec x[/tex] - Solution matrix.

And the inverse of the dependent constants is determined by the following expression:

[tex]\vec {A}^{-1} = \frac{adj (\vec A)}{\det(\vec A)}[/tex]     (2)

Where:

  • [tex]adj(\vec A)[/tex] - Adjugate of the matrix of dependent constants.
  • [tex]\det (\vec A)[/tex] - Determinant of the matrix of dependent constants.

Please notice that the adjugate is the matrix of cofactors of a given matrix.

By applying the concepts of determinant and adjugate we have the following results:

[tex]\det (\vec A) = 1[/tex]

[tex]adj(\vec A) = \left[\begin{array}{ccc}-19&9&-7\\15&-7&6\\-2&1&-1\end{array}\right][/tex]

[tex]\vec {A}^{-1} = \left[\begin{array}{ccc}-19&9&-7\\15&-7&6\\-2&1&-1\end{array}\right][/tex]

The inverse matrix associated to the system of linear equations described in this question is equal to the matrix [tex]\vec {A}^{-1} = \left[\begin{array}{ccc}-19&9&-7\\15&-7&6\\-2&1&-1\end{array}\right][/tex]. (Correct choice: B)

Remark

The statement of the question is poorly formatted. Correct form is shown below:

What is the inverse matrix that can be used to solve this system of equations?

x + 2 · y + 5 · z = 14

3 · x + 5 · y + 9 · z = -1

x + y - 2 · z = 6

To learn more on inverse matrices: https://brainly.com/question/4017205

#SPJ1

Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.