Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
The volume of the region R bounded by the x-axis is: [tex]\mathbf{\iint_R(x^2+y^2)dA = \int ^{tan^{-1}(4)}_{0} \int^{\frac{2}{cos \theta}}_{0} \ r^3 dr d\theta}[/tex]
What is the volume of the solid (R) on the X-axis?
If the axis of revolution is the boundary of the plane region and the cross-sections are parallel to the line of revolution, we may use the polar coordinate approach to calculate the volume of the solid.
From the given graph:
The given straight line passes through two points (0,0) and (2,8). Thus, the equation of the straight line becomes:
[tex]\mathbf{y-y_1 = \dfrac{y_2-y_1}{x_2-x_1}(x-x_1)}[/tex]
here:
- (x₁, y₁) and (x₂, y₂) are two points on the straight line
Suppose we assign (x₁, y₁) = (0, 0) and (x₂, y₂) = (2, 8) from the graph, we have:
[tex]\mathbf{y-0 = \dfrac{8-0}{2-0}(x-0)}[/tex]
y = 4x
Now, our region bounded by the three lines are:
- y = 0
- x = 2
- y = 4x
Similarly, the change in polar coordinates is:
- x = rcosθ,
- y = rsinθ
where;
- x² + y² = r² and dA = rdrdθ
Therefore;
- rsinθ = 0 i.e. r = 0 or θ = 0
- rcosθ = 2 i.e. r = 2/cosθ
- rsinθ = 4(rcosθ) ⇒ tan θ = 4; θ = tan⁻¹ (4)
- ⇒ r = 0 to r = 2/cosθ
- θ = 0 to θ = tan⁻¹ (4)
Then:
[tex]\mathbf{\iint_R(x^2+y^2)dA = \int ^{tan^{-1}(4)}_{0} \int^{\frac{2}{cos \theta}}_{0} \ r^2 (rdr d\theta )}[/tex]
[tex]\mathbf{\iint_R(x^2+y^2)dA = \int ^{tan^{-1}(4)}_{0} \int^{\frac{2}{cos \theta}}_{0} \ r^3 dr d\theta}[/tex]
Learn more about the determining the volume of solids bounded by region R here:
https://brainly.com/question/14393123
#SPJ1
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.