At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
a) [tex](3x)^{15} + 15(3x)^{14}(\frac{2}{x}) + 105(3x)^{13}(\frac{2}{x})^2 + ... + 15(3x)(\frac{2}{x})^{14} + (\frac{2}{x})^{15}[/tex]
b) [tex](2x)^{20} + 20(2x)^{19}(-\frac{3}{x}) + 190(2x)^{18}(-\frac{3}{x})^2 + ... + 20(2x)(-\frac{3}{x})^{19} + (-\frac{3}{x})^{20}[/tex]
Step-by-step explanation:
The binomial expansion formula is:
[tex](a + b)^n = a^n + \binom{n}{1}a^{n-1} b + \binom{n}{2}a^{n-2}b^2 + ... + \binom{n}{r}a^{n-r}b^{r} + ... + b^n[/tex]
The (n r) in front of each term is the binomial coefficient. This can be calculated on a calculator using the nCr button (in this case, you'd put 15C1 for (n 1), 15C2 for (n 2), etc). This can be calculated without a calculator using this formula:
[tex]\binom{n}{r} = \frac{{n!}}{{r!\left( {n - r} \right)!}}[/tex]
In a), a = 3x, b = 2/x and n = 15.
You can plug these into the formula above to get:
[tex](3x)^{15} + 15(3x)^{14}(\frac{2}{x}) + 105(3x)^{13}(\frac{2}{x})^2 + ... + 15(3x)(\frac{2}{x})^{14} + (\frac{2}{x})^{15}[/tex]
Here's how to do this without the formula:
- Start with the a^n
- In the second term, you subtract 1 from a's power (in this case, 15 to 14) and add 1 to b's power (0 to 1). Then you multiply it by nCr.
- This keeps going until you get to b^n. To check you've done it correctly, the powers of a and b in each term should add up to n. For example, in term 3 above, a's power is 13 and b's power is 2. These add to make 15.
- Remember, a's power goes down by 1 each time, and b's power goes up by 1 each time. There is no b in the first term because b^0 = 1.
You could 'simplify' this by expanding the brackets, but this gives you massive numbers so it's probably best to leave it like this.
Applying this to b):
a = 2x, b = -3/x, n = 20
[tex](2x)^{20} + 20(2x)^{19}(-\frac{3}{x}) + 190(2x)^{18}(-\frac{3}{x})^2 + ... + 20(2x)(-\frac{3}{x})^{19} + (-\frac{3}{x})^{20}[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.