Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
a) [tex](3x)^{15} + 15(3x)^{14}(\frac{2}{x}) + 105(3x)^{13}(\frac{2}{x})^2 + ... + 15(3x)(\frac{2}{x})^{14} + (\frac{2}{x})^{15}[/tex]
b) [tex](2x)^{20} + 20(2x)^{19}(-\frac{3}{x}) + 190(2x)^{18}(-\frac{3}{x})^2 + ... + 20(2x)(-\frac{3}{x})^{19} + (-\frac{3}{x})^{20}[/tex]
Step-by-step explanation:
The binomial expansion formula is:
[tex](a + b)^n = a^n + \binom{n}{1}a^{n-1} b + \binom{n}{2}a^{n-2}b^2 + ... + \binom{n}{r}a^{n-r}b^{r} + ... + b^n[/tex]
The (n r) in front of each term is the binomial coefficient. This can be calculated on a calculator using the nCr button (in this case, you'd put 15C1 for (n 1), 15C2 for (n 2), etc). This can be calculated without a calculator using this formula:
[tex]\binom{n}{r} = \frac{{n!}}{{r!\left( {n - r} \right)!}}[/tex]
In a), a = 3x, b = 2/x and n = 15.
You can plug these into the formula above to get:
[tex](3x)^{15} + 15(3x)^{14}(\frac{2}{x}) + 105(3x)^{13}(\frac{2}{x})^2 + ... + 15(3x)(\frac{2}{x})^{14} + (\frac{2}{x})^{15}[/tex]
Here's how to do this without the formula:
- Start with the a^n
- In the second term, you subtract 1 from a's power (in this case, 15 to 14) and add 1 to b's power (0 to 1). Then you multiply it by nCr.
- This keeps going until you get to b^n. To check you've done it correctly, the powers of a and b in each term should add up to n. For example, in term 3 above, a's power is 13 and b's power is 2. These add to make 15.
- Remember, a's power goes down by 1 each time, and b's power goes up by 1 each time. There is no b in the first term because b^0 = 1.
You could 'simplify' this by expanding the brackets, but this gives you massive numbers so it's probably best to leave it like this.
Applying this to b):
a = 2x, b = -3/x, n = 20
[tex](2x)^{20} + 20(2x)^{19}(-\frac{3}{x}) + 190(2x)^{18}(-\frac{3}{x})^2 + ... + 20(2x)(-\frac{3}{x})^{19} + (-\frac{3}{x})^{20}[/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.