Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Answer:
Part A)
[tex]\displaystyle z_6 = 9609600000x^{10}[/tex]
Part B)
[tex]z_4 = 10500 x^9[/tex]
Step-by-step explanation:
Recall the binomial expansion theorem:
[tex]\displaystyle (x+y)^n = \sum_{k=0}^{n}{n \choose k} x^{n-k} y^k[/tex]
Part A)
Our expression is equivalent to:
[tex]\displaystyle (2x+5)^{15} = \sum_{k = 0}^{15} {15 \choose k} (2x)^{15-k}\cdot 5^k[/tex]
To find the sixth term, let k = 5. Therefore, the sixth term is:
[tex]\displaystyle \begin{aligned} z_6 &= {15\choose 5} (2x)^{15-5}\cdot 5^5 \\ \\ & = {15\choose 5}x^{10} \cdot (2)^{10}\cdot 5^5 \\ \\ &= 9609600000x^{10}\end{aligned}[/tex]
Part B)
Likewise:
[tex]\displaystyle \begin{aligned} \left(x^2 + \frac{5}{x}\right)^9 = \sum_{k=0}^9 {9\choose k}(x^2)^{9-k}\left(\frac{5}{x}\right)^{k}\end{aligned}[/tex]
To find the fourth term, let k = 3. Therefore, the fourth term is:
[tex]\displaystyle \begin{aligned} z_4 & = {9\choose 3}\left(x^2\right)^{9-3} \left(\frac{5}{x}\right)^{3} \\ \\ & = {9\choose 3}x^{12} \cdot \frac{5^3}{x^3} \\ \\ & = 10500x^9\end{aligned}[/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.