Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer:
- 150π ft²
- 10π ft.
Step-by-step explanation:
Area of the sector :
[tex]Area (sector) = \pi r^{2} \times \frac{\theta}{360^{o}}[/tex]
Finding the area given r = 30 ft. and θ = 60° :
⇒ Area = π × (30)² × 60/360
⇒ Area = π × 900/6
⇒ Area = 150π ft²
===========================================================
Length of the arc :
[tex]Length (arc) =2 \pi r} \times \frac{\theta}{360^{o}}[/tex]
Finding the arc length given r = 30 ft. and θ = 60° :
⇒ Arc Length = 2 × π × 30 × 60/360
⇒ Arc Length = 60/6 × π
⇒ Arc Length = 10π ft.
Answer:
1. 150π ft²
2. 10π ft²
Step-by-step explanation:
Hello there!
Here is how we solve the given problem:
- Area of the sector of a circle refers to the fractional circle area. Which is given by; (∆°/360°) × πr². Where ∆° is the angle subtended by the arc.
- the arc length also refers to the length swept by the arc with angle theta (∆°) - subtended. Given by
L = ∆°/360° ×2πr
From our problem,
∆ = 60°, r = 30ft
Lets substitute the values
1. A = (∆°/360°) × πr²
= 60°/360° × π × 30²
= 150π ft²
2. L = ∆°/360° × 2πr
= (60/360) × 2 × 30 × π
= 10π ft²
NOTE:
Use the formulas given below to be on a save side;
- A = (∆°/360°) × πr²
- L = ∆°/360° × 2πr.
I hope this helps.
Have a nice studies. :)
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.