Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Compare the equations represented in the table, equation, and graph over
the interval
[-5, 3]. Which function is increasing the fastest?


Compare The Equations Represented In The Table Equation And Graph Over The Interval 5 3 Which Function Is Increasing The Fastest class=

Sagot :

Answer:

Tabled Function

Step-by-step explanation:

To determine which function is increasing the fastest over the interval [-5, 3], we need to calculate and compare each function's average rate of change over the given interval.

The average rate of change of function f(x) over the interval a ≤ x ≤ b is given by:

[tex]\dfrac{f(b)-f(a)}{b-a}[/tex]

Given interval:  -5 ≤ x ≤ 3

Therefore, a = -5  and  b = 3

Tabled function

[tex]f(3)=7[/tex]

[tex]f(-5)=-17[/tex]

[tex]\implies \textsf{Average rate of change}=\dfrac{f(3)-f(-5)}{3-(-5)}=\dfrac{7-(-17)}{3+5}=3[/tex]

Equation:  y = x² - 2

[tex]f(3)=(3)^2-2=7[/tex]

[tex]f(-5)=(-5)^2-2=23[/tex]

[tex]\implies \textsf{Average rate of change}=\dfrac{f(3)-f(-5)}{3-(-5)}=\dfrac{7-23}{3-(-5)}=-2[/tex]

Graphed function

From inspection of the graph:

[tex]f(3)\approx8[/tex]

[tex]f(-5) \approx 0[/tex]

[tex]\implies \textsf{Average rate of change}=\dfrac{f(3)-f(-5)}{3-(-5)} \approx \dfrac{8-0}{3-(-5)}=1[/tex]

Therefore, the Tabled Function has the greatest average rate of change in the interval [-5, 3] and so it is increasing the fastest.