At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Any ideas for this question

Any Ideas For This Question class=

Sagot :

Answer:  36pi (choice b)

===========================================================

Explanation:

Let x = length of side BC

This is the height of the cylinder. Think of a can that is laying on its side. The radius of this can or cylinder is CD

If point B has x coordinate of 12, and BC is 12 units long, this must mean point C has x coordinate of 12-x. This is plugged into the function to show that CD has a length of exactly [tex]\sqrt{12-x}[/tex]

This is the radius of the cylinder

The volume of a cylinder is [tex]V = \pi*r^2*h[/tex]

Plug in the radius and height mentioned to get this function in terms of x

[tex]V = \pi*\left(\sqrt{12-x} \ \right)^2*x[/tex]

That simplifies to

[tex]V = \pi(12-x)x[/tex]

or

[tex]V = \pi(12x-x^2)[/tex]

Ignore the pi portion for now.

We wish to maximize the function f(x) = 12x-x^2

Use either calculus (specifically derivatives) or a graphing calculator to find that the vertex is at (6, 36)

This means x = 6 leads to the largest f(x) value being 36.

Therefore, the volume V is maxed out when x = 6 and we get a max volume of 36pi cubic units.

Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.