Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
The maximum number of cubes that can be stacked on the inclined plane without sliding is determined as 8.
Net force on the box
The net force on the box can be used to determine the maximum number of cubes that can be stacked without sliding.
The stack cubes must be at equilibrium.
∑Fx = 0
nW - μFₙ = 0
where;
- n is number of the cubes
- Fₙ is the normal force of the cubes
- W is the weight of the cubes acting parallel to the plane
n(mg)sinθ - μmgcosθ = 0
n(mg)sinθ = μmgcosθ
nsinθ = μcosθ
- let the coefficient of friction = 1
nsinθ = cosθ
n = cosθ/sinθ
n = 1/tanθ
n = (1)/(1/8)
n = 8
Thus, the maximum number of cubes that can be stacked on the inclined plane without sliding is determined as 8.
Learn more about cubes here: https://brainly.com/question/1972490
#SPJ1
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.