Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
The maximum number of cubes that can be stacked on the inclined plane without sliding is determined as 8.
Net force on the box
The net force on the box can be used to determine the maximum number of cubes that can be stacked without sliding.
The stack cubes must be at equilibrium.
∑Fx = 0
nW - μFₙ = 0
where;
- n is number of the cubes
- Fₙ is the normal force of the cubes
- W is the weight of the cubes acting parallel to the plane
n(mg)sinθ - μmgcosθ = 0
n(mg)sinθ = μmgcosθ
nsinθ = μcosθ
- let the coefficient of friction = 1
nsinθ = cosθ
n = cosθ/sinθ
n = 1/tanθ
n = (1)/(1/8)
n = 8
Thus, the maximum number of cubes that can be stacked on the inclined plane without sliding is determined as 8.
Learn more about cubes here: https://brainly.com/question/1972490
#SPJ1
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.