Show and explain how replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions as the one shown.
8x + 7y = 39
4x – 14y = –68
Answer:
Sample Response: Using the linear combination method, you can multiply the first equation by 2 and add the equations to get 20x = 10. Dividing both sides by 20, x = 1/2. To solve for y, substitute 1/2 for x in the equation 8x + 7y = 39 to get 4 + 7y = 39. Solving this equation, y = 5. Checking this in the other equation, 4(1/2) – 14(5) = –68 results in 2 – 70 = –68 or –68 = –68. The solution of the system shown is (1/2, 5). The system 8x + 7y = 39 and 20x = 10 is formed by replacing 4x –14y = –68 by a sum of it and a multiple of 8x + 7y = 39. Since 20(1/2) = 10, the system 8x + 7y = 39 and 20x = 10 also has a solution of (1/2, 5).