Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
If we evaluate the function at infinity, we can immediately see that:
[tex]\large\displaystyle\text{$\begin{gathered}\sf \bf{\displaystyle L = \lim_{x \to \infty}{\frac{(x^2 + 1)^2 - 3x^2 + 3}{x^3 - 5}} = \frac{\infty}{\infty}} \end{gathered}$}[/tex]
Therefore, we must perform an algebraic manipulation in order to get rid of the indeterminacy.
We can solve this limit in two ways.
Way 1:
By comparison of infinities:
We first expand the binomial squared, so we get
[tex]\large\displaystyle\text{$\begin{gathered}\sf \displaystyle L = \lim_{x \to \infty}{\frac{x^4 - x^2 + 4}{x^3 - 5}} = \infty \end{gathered}$}[/tex]
Note that in the numerator we get x⁴ while in the denominator we get x³ as the highest degree terms. Therefore, the degree of the numerator is greater and the limit will be \infty. Recall that when the degree of the numerator is greater, then the limit is \infty if the terms of greater degree have the same sign.
Way 2
Dividing numerator and denominator by the term of highest degree:
[tex]\large\displaystyle\text{$\begin{gathered}\sf L = \lim_{x \to \infty}\frac{x^{4}-x^{2} +4 }{x^{3}-5 } \end{gathered}$}\\[/tex]
[tex]\ \ = \lim_{x \to \infty\frac{\frac{x^{4} }{x^{4} }-\frac{x^{2} }{x^{4}}+\frac{4}{x^{4} } }{\frac{x^{3} }{x^{4}}-\frac{5}{x^{4}} } }[/tex]
[tex]\large\displaystyle\text{$\begin{gathered}\sf \bf{=\lim_{x \to \infty}\frac{1-\frac{1}{x^{2} } +\frac{4}{x^{4} } }{\frac{1}{x}-\frac{5}{x^{4} } } \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{1}{0}=\infty } \end{gathered}$}[/tex]
Note that, in general, 1/0 is an indeterminate form. However, we are computing a limit when x →∞, and both the numerator and denominator are positive as x grows, so we can conclude that the limit will be ∞.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.