Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
Approximately [tex]111\; {\rm \Omega}[/tex].
Explanation:
It is given that [tex]R_{1} = 200\; {\Omega}[/tex] and [tex]R_{2} = 250\; {\Omega}[/tex] are connected in a circuit in parallel.
Assume that this circuit is powered with a direct current power supply of voltage [tex]V[/tex].
Since [tex]R_{1}[/tex] and [tex]R_{2}[/tex] are connected in parallel, the voltage across the two resistors would both be [tex]V[/tex]. Thus, the current going through the two resistors would be [tex](V / R_{1})[/tex] and [tex](V / R_{2})[/tex], respectively.
Also because the two resistors are connected in parallel, the total current in this circuit would be the sum of the current in each resistor: [tex]I = (V / R_{1}) + (V / R_{2})[/tex].
In other words, if the voltage across this circuit is [tex]V[/tex], the total current in this circuit would be [tex]I = (V / R_{1}) + (V / R_{2})[/tex]. The (equivalent) resistance [tex]R[/tex] of this circuit would be:
[tex]\begin{aligned} R &= \frac{V}{I} \\ &= \frac{V}{(V / R_{1}) + (V / R_{2})} \\ &= \frac{1}{(1/R_{1}) + (1 / R_{2})}\end{aligned}[/tex].
Given that [tex]R_{1} = 200\; {\Omega}[/tex] and [tex]R_{2} = 250\; {\Omega}[/tex]:
[tex]\begin{aligned} R &= \frac{1}{(1/R_{1}) + (1 / R_{2})} \\ &= \frac{1}{(1/(200\: {\rm \Omega})) + (1/(250\; {\rm \Omega}))} \\ &\approx 111\; {\rm \Omega}\end{aligned}[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.