At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

What are the coordinates of the point on the directed line segment from (−3,8) to (6, -4) that partitions the segment into a ratio of 1 to 5?

Sagot :

let's say the segment is A(-3,8) and B(6,-4) and point C splits it on a 1:5 ratio from A to B, let's check for C coordinates.

[tex]\textit{internal division of a line segment using ratios} \\\\\\ A(-3,8)\qquad B(6,-4)\qquad \qquad \stackrel{\textit{ratio from A to B}}{1:5} \\\\\\ \cfrac{A\underline{C}}{\underline{C} B} = \cfrac{1}{5}\implies \cfrac{A}{B} = \cfrac{1}{5}\implies 5A=1B\implies 5(-3,8)=1(6,-4)[/tex]

[tex](\stackrel{x}{-15}~~,~~ \stackrel{y}{40})=(\stackrel{x}{6}~~,~~ \stackrel{y}{-4})\implies C=\underset{\textit{sum of the ratios}}{\left( \cfrac{\stackrel{\textit{sum of x's}}{-15 +6}}{1+5}~~,~~\cfrac{\stackrel{\textit{sum of y's}}{40 -4}}{1+5} \right)} \\\\\\ C=\left(\cfrac{-9}{6}~~,~~ \cfrac{36}{6} \right)\implies C=\left( -\cfrac{3}{2}~~,~~6 \right)[/tex]