Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
The equation that defines the relationship between the height and the time and models the position of the ball in time is the quadratic function y = - 8 · t² + 24 · t.
How to derive a quadratic function for the height of a ball
Quadratic functions are polynomials of grade 2 of the form y = a · t² + b · t + c, where t and y are the time and the height of the ball, in seconds and feet, respectively. To determine the value of the three coefficients we need to know three different points of the form (t, y).
If we know that (t₁, y₁) = (0 s, 0 ft), (t₂, y₂) = (1 s, 16 ft) and (t₃, y₃) = (3 s, 0 ft), then the quadratic function is:
a · 0² + b · 0 + c = 0 (1)
a · 1² + b · 1 + c = 16 (2)
a · 3² + b · 3 + c = 0 (3)
The solution to this system is a = - 8, b = 24, c = 0.
The equation that defines the relationship between the height and the time and models the position of the ball in time is the quadratic function y = - 8 · t² + 24 · t.
To learn more on quadratic functions: https://brainly.com/question/17177510
#SPJ1
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.