At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

1. Find the equation of a normal to the curve y= 2² - 2x +3 at the point (3,0)​

Sagot :

I think you meant to say the equation is

y = 2x² - 2x + 3

Differentiate both sides with respect to x :

dy/dx = 4x - 2

At the point (3, 0), the slope of the tangent line is dy/dx(3) = 4•3 - 2 = 10. Then the normal line to the curve at (3, 0) has slope -1/10.

Using the point-slope formula, the equation of the normal line is

y - 0 = -1/10 (x - 3)   ⇒   y = (3 - x)/10

We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.