Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
The total electric field of the rod at a distance, x to the right hand end of the rod is determined as [tex]E = \frac{\lambda}{4\pi \varepsilon _0} [\frac{1}{x} - \frac{1}{x+ l} ][/tex].
Expression for the electric field
An expression for the electric field due to an arbitrary source location at observation location on the x-axis is determined as follows;
E = kq/r²
where;
- k is coulomb's constant
- r is the distance on x - axis
Total electric field of the entire rod
[tex]\int\limits {dE} \,=\int\limits {\frac{kdQ}{r^2} }\\\\E = \lambda k \int\limits^{x + l}_x {\frac{dr}{r^2}} \,= \lambda k [-\frac{1}{r} ] \\\\E = \lambda k [\frac{1}{x} - \frac{1}{x+ l} ]\\\\E = \frac{\lambda}{4\pi \varepsilon _0} [\frac{1}{x} - \frac{1}{x+ l} ][/tex]
Thus, the total electric field of the rod at a distance, x to the right hand end of the rod is determined as [tex]E = \frac{\lambda}{4\pi \varepsilon _0} [\frac{1}{x} - \frac{1}{x+ l} ][/tex].
Learn more about electric field here: https://brainly.com/question/14372859
#SPJ1
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.