At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
The total electric field of the rod at a distance, x to the right hand end of the rod is determined as [tex]E = \frac{\lambda}{4\pi \varepsilon _0} [\frac{1}{x} - \frac{1}{x+ l} ][/tex].
Expression for the electric field
An expression for the electric field due to an arbitrary source location at observation location on the x-axis is determined as follows;
E = kq/r²
where;
- k is coulomb's constant
- r is the distance on x - axis
Total electric field of the entire rod
[tex]\int\limits {dE} \,=\int\limits {\frac{kdQ}{r^2} }\\\\E = \lambda k \int\limits^{x + l}_x {\frac{dr}{r^2}} \,= \lambda k [-\frac{1}{r} ] \\\\E = \lambda k [\frac{1}{x} - \frac{1}{x+ l} ]\\\\E = \frac{\lambda}{4\pi \varepsilon _0} [\frac{1}{x} - \frac{1}{x+ l} ][/tex]
Thus, the total electric field of the rod at a distance, x to the right hand end of the rod is determined as [tex]E = \frac{\lambda}{4\pi \varepsilon _0} [\frac{1}{x} - \frac{1}{x+ l} ][/tex].
Learn more about electric field here: https://brainly.com/question/14372859
#SPJ1
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.