Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
By the quadratic formula, we find that the two zeroes of the quadratic function y = x² - 20 · x + 32 are x₁ = 10 + 2√17 and x₂ = 10 - 2√17, respectively.
How to find the zeroes of a second order polynomial
A value of x is a zero of a polynomial if and only if [tex]\sum\limits_{i=0}^{n} c_{i}\cdot x^{i} = 0[/tex], the quadratic formula for second order polynomials of the form a · x² + b · x + c = 0 is presented below:
[tex]x =\frac{-b \pm \sqrt{b^{2}-4\cdot a \cdot c}}{2\cdot a}[/tex]
If we know that a = 1, b = -20 and c = 32, then the roots of the second order polynomial are:
[tex]x = \frac{20 \pm \sqrt{(-20)^{2}-4\cdot (1)\cdot (32)}}{2\cdot (1)}[/tex]
[tex]x = 10 \pm 2\sqrt{17}[/tex]
By the quadratic formula, we find that the two zeroes of the quadratic function y = x² - 20 · x + 32 are x₁ = 10 + 2√17 and x₂ = 10 - 2√17, respectively.
To learn more on quadratic functions: https://brainly.com/question/5975436
#SPJ1
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.