Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
The probability that demand is greater than 1800 gallons over a 2 hour period is : 0.5
Given data :
Mean value of gasoline per hour = 875 gallons
Standard deviation = 55 gallons
Determine the probability of demand being greater than 1800 gallons over 2 hours
Demand for gas in 1 hour = X₁
Demand for gas in 2 hours = X₁ + X₂
Therefore ; ( X₁ + X₂) ~ N ( u₁+u₂, sd₁² + sd₂² )
In order to calculate probabilities for normals apply the equation below
Z = ( X- u ) / sd
where : u = 1800, sd = √ ( 55² + 55² ) = 77.78
using the z-table
P( Y > 1800) = P( Z > ( 1800 - 1800 ) / 77.78)
= P( Z>0 ) = 0.5
Hence we can conclude that The probability that demand is greater than 1800 gallons over a 2 hour period is : 0.5.
Learn more about probability : https://brainly.com/question/24756209
#SPJ1
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.