At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
The probability that demand is greater than 1800 gallons over a 2 hour period is : 0.5
Given data :
Mean value of gasoline per hour = 875 gallons
Standard deviation = 55 gallons
Determine the probability of demand being greater than 1800 gallons over 2 hours
Demand for gas in 1 hour = X₁
Demand for gas in 2 hours = X₁ + X₂
Therefore ; ( X₁ + X₂) ~ N ( u₁+u₂, sd₁² + sd₂² )
In order to calculate probabilities for normals apply the equation below
Z = ( X- u ) / sd
where : u = 1800, sd = √ ( 55² + 55² ) = 77.78
using the z-table
P( Y > 1800) = P( Z > ( 1800 - 1800 ) / 77.78)
= P( Z>0 ) = 0.5
Hence we can conclude that The probability that demand is greater than 1800 gallons over a 2 hour period is : 0.5.
Learn more about probability : https://brainly.com/question/24756209
#SPJ1
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.