Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Answer:
(a) Approximately [tex]105\; {\rm rad \cdot s^{-1}}[/tex].
(b) Approximately [tex]15.7\; {\rm m \cdot s^{-1}}[/tex], assuming that this cylinder is rotating along the axis that goes through the center.
Explanation:
The unit [tex]{\rm rpm}[/tex] stands for "revolutions per minute", where each revolution is [tex]2\, \pi[/tex] radians.
With an angular velocity of [tex]1000\; {\rm rpm}[/tex], this cylinder would turn [tex]1000\times 2\, \pi = 2000\, \pi[/tex] radians every minute ([tex]60\; {\rm s}[/tex]). Thus, the angular velocity of this cylinder would be:
[tex]\begin{aligned} \omega &= \frac{2000\, \pi\; {\rm rad}}{60\; {\rm s}} \\ &\approx 104.720\; {\rm rad \cdot s^{-1}}\end{aligned}[/tex].
A point at the rim of this cylinder would be at a distance of [tex]r = 15.0\; {\rm cm} = 0.150\; {\rm m}[/tex] from the axis of revolution of this cylinder. If the angular velocity of this cylinder is [tex]\omega[/tex], the tangential velocity of this point would be:
[tex]\begin{aligned} v&= \omega\, r \\ &= \frac{2000\, \pi}{60\; {\rm s}} \times 0.150\; {\rm m} \\ &\approx 15.7 \; {\rm m\cdot s^{-1}}\end{aligned}[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.