At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Mike's claim that (5,28.6) is a point on the exponential function g(x) is incorrect
How to determine if he is correct?
The points are given as:
(3,6.5) and (4,17.55)
An exponential equation is represented as:
[tex]y = ab^x[/tex]
Using the given points, we have the following equations:
[tex]ab^3 = 6.5[/tex]
[tex]ab^4 = 17.55[/tex]
Divide both equations:
[tex]ab^4 \div ab^3 = 17.55 \div 6.5[/tex]
Evaluate
b = 2.7
Substitute b = 2.7 in [tex]ab^3 = 6.5[/tex]
[tex]a * 2.7^3 = 6.5[/tex]
Solve for a
[tex]a = \frac{6.5}{2.7^3}[/tex]
Substitute [tex]a = \frac{6.5}{2.7^3}[/tex] and b = 2.7 in [tex]y = ab^x[/tex]
[tex]y = \frac{6.5}{2.7^3} * 2.7^x[/tex]
His point (5,28.6) means that:
x = 5 when y = 28.6
Substitute x = 5 in [tex]y = \frac{6.5}{2.7^3} * 2.7^x[/tex]
[tex]y = \frac{6.5}{2.7^3} * 2.7^5[/tex]
Evaluate
y = 47.385
y = 47.385 and y = 28.6 are not the same
Hence, Mike's claim is incorrect
Read more about exponential equations at:
https://brainly.com/question/11832081
#SPJ1
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.