Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's solve ourselves instead of believing anyone
[tex]\\ \rm\Rrightarrow (x^2)^7=x^4x^8[/tex]
- a^m+a^n=a^m+n
[tex]\\ \rm\Rrightarrow x^{14}=x^{4+8}[/tex]
[tex]\\ \rm\Rrightarrow x^{14}=x^{12}[/tex]
[tex]\\ \rm\Rrightarrow x^{14}-x^{12}=0[/tex]
[tex]\\ \rm\Rrightarrow x^{12}(x^2-1)=0[/tex]
[tex]\\ \rm\Rrightarrow x^2-1=0[/tex]
[tex]\\ \rm\Rrightarrow x^2=1[/tex]
[tex]\\ \rm\Rrightarrow x=\pm 1[/tex]
- 0 is also a solution
Answer:
Joe is correct
Step-by-step explanation:
Given equation:
[tex](x^2)^?=x^4 \cdot x^8[/tex]
The exponent outside the bracket is a question mark and the students are trying to determine the value of the question mark.
For ease of answering, let y be the unknown number (question mark):
[tex]\implies (x^2)^y=x^4 \cdot x^8[/tex]
First, simplify the equation by applying exponent rules to either side of the equation:
[tex]\textsf{Apply exponent rule} \quad (a^b)^c=a^{bc}\quad\textsf{to the left side}:[/tex]
[tex]\implies (x^2)^y=x^4 \cdot x^8[/tex]
[tex]\implies x^{2y}=x^4 \cdot x^8[/tex]
[tex]\textsf{Apply exponent rule} \quad a^b \cdot a^c=a^{b+c} \quad \textsf{to the right side}:[/tex]
[tex]\implies x^{2y}=x^4 \cdot x^8[/tex]
[tex]\implies x^{2y}=x^{4+8}[/tex]
[tex]\implies x^{2y}=x^{12}[/tex]
Now, apply the exponent rule:
[tex]x^{f(x)}=x^{g(x)} \implies f(x)=g(x)[/tex]
Therefore,
[tex]x^{2y}=x^{12}\implies 2y=12[/tex]
Finally, solve for y:
[tex]\implies 2y=12[/tex]
[tex]\implies 2y \div 2 = 12 \div 2[/tex]
[tex]\implies y=6[/tex]
Therefore, Joe is correct as the unknown number is 6.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.