Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
The equation of the line is 5y = 6x + 8 which passes through point C and perpendicular AB.
What is the slope?
The ratio that y increase as x increases is the slope of a line. The slope of a line reflects how steep it is, but how much y increases as x increases. Anywhere on the line, the slope stays unchanged (the same).
[tex]\rm m =\dfrac{y_2-y_1}{x_2-x_1}[/tex]
We have a triangle ABC is defined by the points A(2,9), B(8,4), and C(-3,-2).
The slope of the segment AB:
[tex]\rm m =\dfrac{4-9}{8-2}[/tex]
m = -5/6
The slope of the line perpendicular to AB:
Let M is the slope of the line:
mM = -1
(-5/6)M = -1
M = 6/5
The line:
y = Mx + c
y = (6/5)x + c
The line passing through the point C(-3, -2)
-2 = (6/5)(-3) + c
c = 8/5
y = (6/5)x + 8/5
5y = 6x + 8
Thus, the equation of the line is 5y = 6x + 8 which passes through point C and perpendicular AB.
Learn more about the slope here:
brainly.com/question/3605446
#SPJ1
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.