Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

(5√3-√27)^3
how do you prove that this is an integer?


Sagot :

Keys:

  • [tex]\left(a\cdot \:b\right)^n=a^nb^n[/tex]

Step-by-step explanation:

[tex]\left(5\sqrt{3}-\sqrt{27}\right)^3\\\5\sqrt{3}-\sqrt{27}^3=\left(2\sqrt{3}\right)^3\\= 2\sqrt{3}\\\left(2\sqrt{3}\right)^3=2^3\left(\sqrt{3}\right)^3\\=2^3\left(\sqrt{3}\right)^3\\2^3=8\\=8\left(\sqrt{3}\right)^3\\=8\cdot \:3\sqrt{3}\\8\cdot \:3=24\\=24\sqrt{3}[/tex]

caylus

Answer:

It is not an integer.

Step-by-step explanation:

[tex](5\sqrt{3} -\sqrt{27} )^3\\\\=(\sqrt{3} *(5-3))^3\\\\=8*3*\sqrt{3} \\\\=24\sqrt{3} \\[/tex]

Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.