Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Cos (pi/5) + cos (2pi/5)+ Cos (3pi/5)
+ Cos (4pi/5)


Sagot :

Answer:

0

Keys:

When going over functions like this, we must use these cosine rules:

  • [tex]\cos \left(s\right)+\cos \left(t\right)=2\cos \left(\frac{s+t}{2}\right)\cos \left(\frac{s-t}{2}\right)[/tex]
  • [tex]\cos \left(-x\right)=\cos \left(x\right)[/tex]
  • [tex]\cos \left(\frac{\pi }{2}\right)=0[/tex]

Step-by-step explanation:

[tex]=\cos \left(\frac{\pi }{5}\right)+2\cos \left(\frac{2\cdot \frac{\pi }{5}+3\cdot \frac{\pi }{5}}{2}\right)\cos \left(\frac{2\cdot \frac{\pi }{5}-3\cdot \frac{\pi }{5}}{2}\right)+\cos \left(4\cdot \frac{\pi }{5}\right)\\=\cos \left(\frac{\pi }{5}\right)+2\cos \left(\frac{\pi }{2}\right)\cos \left(-\frac{\pi }{10}\right)+\cos \left(\frac{4\pi }{5}\right)\\=\cos \left(\frac{\pi }{5}\right)+2\cos \left(\frac{\pi }{2}\right)\cos \left(\frac{\pi }{10}\right)+\cos \left(\frac{4\pi }{5}\right)[/tex]

[tex]cos\left(\frac{\pi }{5}\right) = \frac{\sqrt{5} + 1}{4}\\=\frac{\sqrt{5}+1}{4}+2\cdot \:0\cdot \frac{\sqrt{2}\sqrt{5+\sqrt{5}}}{4}-\frac{1+\sqrt{5}}{4}\\=0[/tex]

0

by using the cosine rule you can find this
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.