Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Consider functions fand g.
f(x) = -x3
g(x) = |1/8x-1|
What is the value of (gof)(4)?
O A. -1/8
OB. 9
O C. -9
O D. 1/8


Sagot :

The value of (gof)(4) is 9 if the function f(x) is f(x) = -x³, and function g(x) is g(x) = |1/8x-1| option (B) is correct.

What is a function?

It is defined as a special type of relationship, and they have a predefined domain and range according to the function every value in the domain is related to exactly one value in the range.

We have a function:

f(x) = -x³

[tex]\rm g(x) = |\dfrac{1}{8}x-1|[/tex]

Plug x = 4 in the f(x)

f(4) = -4³ = -64

Plug the above value in the g(x)

[tex]\rm g(x) = |\dfrac{1}{8}(-64)-1|[/tex]

g(f(4)) = |-8-1| = |-9| = 9

Thus, the value of (gof)(4) is 9 if the function f(x) is f(x) = -x³, and function g(x) is g(x) = |1/8x-1| option (B) is correct.

Learn more about the function here:

brainly.com/question/5245372

#SPJ1