Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Using limits, it is found that the end behavior of the graph is given as follows:
It rises to the left, and stays constant at y = -4 to the right.
What is the end behavior of a function f(x)?
It is given by the limits of f(x) as x goes to infinity.
In this problem, the function is given by:
[tex]f(x) = 4\left(\frac{2}{5}\right)^{x + 3} - 4[/tex]
Hence:
[tex]\lim_{x \rightarrow -\infty} f(x) = \lim_{x \rightarrow -\infty} 4\left(\frac{2}{5}\right)^{x + 3} - 4 = 4\left(\frac{5}{2}\right)^{\infty + 3} - 4 = \infty - 4 = \infty[/tex]
[tex]\lim_{x \rightarrow \infty} f(x) = \lim_{x \rightarrow -\infty} 4\left(\frac{2}{5}\right)^{x + 3} - 4 = 4\left(\frac{2}{5}\right)^{\infty + 3} - 4 = 0 - 4 = -4[/tex]
Hence:
It rises to the left, and stays constant at y = -4 to the right.
More can be learned about limits and end behavior at https://brainly.com/question/22026723
#SPJ1
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.