At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Using the binomial distribution, it is found that there is a 0.9842 = 98.42% probability that 3 or fewer experienced insomnia as a side effect, which means that it is a highly likely event.
What is the binomial distribution formula?
The formula is:
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
The values of the parameters are given as follows:
n = 20, p = 0.05.
The probability that 3 or fewer experienced insomnia as a side effect is given by:
[tex]P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)[/tex]
Hence:
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{20,0}.(0.05)^{0}.(0.95)^{20} = 0.3585[/tex]
[tex]P(X = 1) = C_{20,1}.(0.05)^{1}.(0.95)^{19} = 0.3774[/tex]
[tex]P(X = 2) = C_{20,2}.(0.05)^{2}.(0.95)^{18} = 0.1887[/tex]
[tex]P(X = 3) = C_{20,3}.(0.05)^{3}.(0.95)^{17} = 0.0596[/tex]
Then:
[tex]P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 0.3585 + 0.3774 + 0.1887 + 0.0596 = 0.9842[/tex]
0.9842 = 98.42% probability that 3 or fewer experienced insomnia as a side effect.
Since this probability is greater than 95%, this is a highly likely event.
More can be learned about the binomial distribution at https://brainly.com/question/24863377
#SPJ1
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.