Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Use the definitions of expectation and variance.
- Expectation
[tex]E(X) = \displaystyle \int_{-\infty}^\infty x f_X(x) \, dx = \frac14 \int_0^\infty x e^{-x/4} \, dx[/tex]
Integrate by parts,
[tex]\displaystyle \int_a^b u \, dv = uv \bigg|_a^b - \int_a^b v \, du[/tex]
with
[tex]u = x \implies du = dx \\\\ dv = e^{-x/4} \, dx \implies v = -4 e^{-x/4}[/tex]
Then
[tex]E(X) = \displaystyle \frac14 \left(\left(-4x e^{-x/4}\right)\bigg|_0^\infty + 4 \int_0^\infty e^{-x/4} \, dx\right)[/tex]
[tex]E(X) = \displaystyle \int_0^\infty e^{-x/4} \, dx = \boxed{4}[/tex]
(since the integral of the PDF is 1, and this integral is 4 times that)
- Variance
[tex]V(X) = E\bigg((X - E(X))^2\bigg) = E(X^2) - E(X)^2[/tex]
Compute the so-called second moment.
[tex]E(X^2) = \displaystyle \int_{-\infty}^\infty x^2 f_X(x)\, dx = \frac14 \int_0^\infty x^2 e^{-x/4} \, dx[/tex]
Integrate by parts, with
[tex]u = x^2 \implies du = 2x \, dx \\\\ dv = e^{-x/4} \, dx \implies v = -4 e^{-x/4}[/tex]
Then
[tex]E(X^2) = \displaystyle \frac14 \left(\left(-4x^2 e^{-x/4}\right)\bigg|_0^\infty + 8 \int_0^\infty x e^{-x/4} \, dx\right)[/tex]
[tex]E(X^2) = 8 E(X) = 32[/tex]
and the variance is
[tex]V(X) = 32 - 4^2 = \boxed{16}[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.