Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Use the definitions of expectation and variance.
- Expectation
[tex]E(X) = \displaystyle \int_{-\infty}^\infty x f_X(x) \, dx = \frac14 \int_0^\infty x e^{-x/4} \, dx[/tex]
Integrate by parts,
[tex]\displaystyle \int_a^b u \, dv = uv \bigg|_a^b - \int_a^b v \, du[/tex]
with
[tex]u = x \implies du = dx \\\\ dv = e^{-x/4} \, dx \implies v = -4 e^{-x/4}[/tex]
Then
[tex]E(X) = \displaystyle \frac14 \left(\left(-4x e^{-x/4}\right)\bigg|_0^\infty + 4 \int_0^\infty e^{-x/4} \, dx\right)[/tex]
[tex]E(X) = \displaystyle \int_0^\infty e^{-x/4} \, dx = \boxed{4}[/tex]
(since the integral of the PDF is 1, and this integral is 4 times that)
- Variance
[tex]V(X) = E\bigg((X - E(X))^2\bigg) = E(X^2) - E(X)^2[/tex]
Compute the so-called second moment.
[tex]E(X^2) = \displaystyle \int_{-\infty}^\infty x^2 f_X(x)\, dx = \frac14 \int_0^\infty x^2 e^{-x/4} \, dx[/tex]
Integrate by parts, with
[tex]u = x^2 \implies du = 2x \, dx \\\\ dv = e^{-x/4} \, dx \implies v = -4 e^{-x/4}[/tex]
Then
[tex]E(X^2) = \displaystyle \frac14 \left(\left(-4x^2 e^{-x/4}\right)\bigg|_0^\infty + 8 \int_0^\infty x e^{-x/4} \, dx\right)[/tex]
[tex]E(X^2) = 8 E(X) = 32[/tex]
and the variance is
[tex]V(X) = 32 - 4^2 = \boxed{16}[/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.