Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
(a) Given [tex]f(x) = x^3[/tex], the derivative is
[tex]f'(x)=3x^2[/tex]
which is exists for all [tex]x[/tex] in the domain of [tex]f[/tex], so [tex]]f[/tex] is differentiable everywhere and satisfies the mean value theorem. There is some number [tex]c[/tex] in the open interval (0, 2) such that
[tex]f'(c) = \dfrac{f(2) - f(0)}{2-0} \iff 3c^2 = \dfrac{8-0}2 = 4[/tex]
Solve for [tex]c[/tex] :
[tex]3c^2 = 4 \implies c^2 = \dfrac43 \implies \boxed{c = \dfrac2{\sqrt3}}[/tex]
We omit the negative square root since it doesn't belong to (0, 2). Graphically, the MVT tells us the tangent line to the curve [tex]f(x)=x^3[/tex] at [tex]x=\frac2{\sqrt3}[/tex] is parallel to the secant line through the endpoints of the given interval.
(b) [tex]f(x)=1+x+x^2[/tex] has derivative
[tex]f'(x)=1+2x[/tex]
By the MVT,
[tex]f'(c) = \dfrac{f(2)-f(0)}{2-0} \iff 1+2c = \dfrac{7-1}2 \implies \boxed{c = 1}[/tex]
(c) [tex]f(x) = \cos(2\pi x)[/tex] has derivative
[tex]f'(x) = -2\pi \sin(2\pi x)[/tex]
By the MVT,
[tex]f'(c) = \dfrac{f(2)-f(0)}{2-0} \iff -2\pi \sin(2\pi c) = \dfrac{0-0}2 \implies \sin(2\pi c) = 0 \\\\ \implies 2\pi c = n\pi \implies c = \dfrac n2[/tex]
where [tex]n[/tex] is any integer. There are 3 solutions in the interval (0, 2),
[tex]\boxed{c = \dfrac12, c = 1, c = \dfrac32}[/tex]
(Pictured is the situation with [tex]c=\frac12[/tex])
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.