Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Answer:
[tex]\cos \theta =\dfrac{\sqrt{21}}{5}[/tex]
Step-by-step explanation:
Given:
- [tex]\sin \theta=\dfrac{2}{5}[/tex]
- [tex](\sin x)^2+(\cos x)^2=1[/tex]
Substitute the given value of sin θ into the given identity and solve for cos θ:
[tex]\begin{aligned}(\sin x)^2+(\cos x)^2 & =1\\\implies (\sin \theta)^2+(\cos \theta)^2 & =1\\\left(\dfrac{2}{5}\right)^2+(\cos \theta)^2 & =1\\\left(\dfrac{2^2}{5^2}\right)+(\cos \theta)^2 & =1\\\dfrac{4}{25}+(\cos \theta)^2 & =1\\(\cos \theta)^2 & =1-\dfrac{4}{25}\\(\cos \theta)^2 & =\dfrac{21}{25}\\\cos \theta & =\sqrt{\dfrac{21}{25}}\\\cos \theta & =\dfrac{\sqrt{21}}{\sqrt{25}}\\\cos \theta & =\dfrac{\sqrt{21}}{5}\end{aligned}[/tex]
[tex]\large\bold{SOLUTION} \\ [/tex]
The Pythagorean Identity states that:
- (sin x)² + (cos x)² = 1
Given:
[tex] \qquad\sf \hookrightarrow \: \boxed {\sf{\sin \theta=\dfrac{2}{5}, find \: \cos \theta}}[/tex]
Substitute the given value of sin θ
[tex]\begin{gathered}\begin{aligned}\sf\implies(\sin x)^2+(\cos x)^2 & =1\\\\\sf\implies (\sin \theta)^2+(\cos \theta)^2 & =1\\\\\sf\implies\left(\dfrac{2}{5}\right)^2+(\cos \theta)^2 & =1\\\\\sf\implies\left(\dfrac{2^2}{5^2}\right)+(\cos \theta)^2 & =1\\\\\sf\implies\dfrac{4}{25}+(\cos \theta)^2 & =1\\\\\sf\implies(\cos \theta)^2 & =1-\dfrac{4}{25}\\\\\sf\implies(\cos \theta)^2 & =\dfrac{21}{25}\\\\\sf\implies\cos \theta & =\sqrt{\dfrac{21}{25}}\\\\\sf\implies\cos \theta & =\dfrac{\sqrt{21}}{\sqrt{25}}\\\\\sf\bf\implies\cos \theta & ={\pmb{\dfrac{\sqrt{21}}{5}}}\end{aligned}\end{gathered} [/tex]
[tex] \underline{ \rule{185pt}{3pt}}[/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.