Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
The slant height of the pyramid will be 5 inches.
Given Information and Formula Used
Volume of the clay = 48 cubic inches
Edge of the square base of the pyramid, a= 6 inches
Volume of the pyramid = (1/3) × Base Area × Height
Pythagoras Theorem, l² = x² + h²
Here, l is the hypotenuse, x is the base and [tex]h[/tex] is the height in a right angle triangle.
Calculating the Height, h of the Pyramid
Volume of the pyramid = Volume of the clay
Volume of the pyramid, V= 48 cubic inches
Base Area of the pyramid, B = a²
⇒ B = 6² square inches
⇒ B = 36 square inches
∵ V = (1/3)×B×H
[tex]\frac{1}{3}*36*h = 48[/tex]
∴ [tex]h = \frac{48*3}{36}[/tex]
⇒ h = 4 inches
Calculating the Slant Height, l of the Pyramid
Applying Pythagoras Theorem to determine the slant height,
l² = x² + h²
Here, we have x=a/2
[tex]l^{2} = \frac{a^{2} }{4} + b^{2}[/tex]
[tex]l^{2} = \frac{6^{2} }{4} + 4^{2}[/tex]
[tex]l = \sqrt{9+16}[/tex]
[tex]l=\sqrt{25}[/tex]
l =5 inches
Thus, the slant height of the solid right pyramid with a square base made by Helen is 5 inches.
Learn more about a pyramid here:
https://brainly.com/question/17615619
#SPJ4
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.