Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
During an action potential, the rapid decrease in sodium permeability and simultaneous increase in potassium permeability is responsible for Repolarization.
- K+ departs the cell after Na+, which enters the cell first. Ions can move freely across the axon membrane because of the difference during the action potential.
- Because sodium contains a positive charge, the neuron becomes more positive and depolarized. Potassium channels take longer to open. As soon as the cell does open, K+ rushes out, reversing the depolarization known as repolarization.
- Sodium channels close during the peak of the action potential when potassium leaves the cell. When potassium ions are effluxed, the membrane potential is lowered or the cell becomes hyperpolarized.
- Outside of the cell, the concentration of Na+ is greater than inside the cell. while the concentration of K+ is is greater inside the cell than outside.
learn more about action potential here: brainly.com/question/6705448
#SPJ4
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.