Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
An inequality relating 100n and n³ is 100n ≥ n³ for n ≤ 10 and 100n ≤ n³ for n ≥ 10.
What is inequality?
An inequality is comparison of two values, showing if one is less than, greater than, or simply not equal to another value.
Since 100n and n³ for n = 1, 2, 3, . . . 9, 10, 11 are 100, 200, 300, . . . 900, 1000, 1100 and 1, 8, 27, . . . 729, 1000, 1331 respectively.
Therefore, an inequality relating 100n and n³ will be 100n ≥ n³ for n ≤ 10 and 100n ≤ n³ for n ≥ 10.
Induction hypothesis:
Suppose 100n ≤ k³ for some positive integer k ≥ 10.
We need to show that 100( k + 1 ) ≤ ( k + 1 )³ = k³ + 3k² +3k + 1.
Note 100( k + 1 ) = 100k + 100 ≤ k³ + 100
≤ k³ + 3k² (∵ k ≥ 10 )
≤ k³ + 3k² + 3k
≤ k³ + 3k²+3k + 1
So 100( k + 1 ) ≤ ( k + 1 )³, which is true.
Hence by the principle of mathematical induction, 100n ≤ k³ for every integer k ≥ 10.
Know more about inequality here:
https://brainly.com/question/20383699
#SPJ1
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.