Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
An inequality relating 100n and n³ is 100n ≥ n³ for n ≤ 10 and 100n ≤ n³ for n ≥ 10.
What is inequality?
An inequality is comparison of two values, showing if one is less than, greater than, or simply not equal to another value.
Since 100n and n³ for n = 1, 2, 3, . . . 9, 10, 11 are 100, 200, 300, . . . 900, 1000, 1100 and 1, 8, 27, . . . 729, 1000, 1331 respectively.
Therefore, an inequality relating 100n and n³ will be 100n ≥ n³ for n ≤ 10 and 100n ≤ n³ for n ≥ 10.
Induction hypothesis:
Suppose 100n ≤ k³ for some positive integer k ≥ 10.
We need to show that 100( k + 1 ) ≤ ( k + 1 )³ = k³ + 3k² +3k + 1.
Note 100( k + 1 ) = 100k + 100 ≤ k³ + 100
≤ k³ + 3k² (∵ k ≥ 10 )
≤ k³ + 3k² + 3k
≤ k³ + 3k²+3k + 1
So 100( k + 1 ) ≤ ( k + 1 )³, which is true.
Hence by the principle of mathematical induction, 100n ≤ k³ for every integer k ≥ 10.
Know more about inequality here:
https://brainly.com/question/20383699
#SPJ1
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.