Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Using the z-distribution, it is found that she should take a sample of 97 scores to ensure that the margin of error is below 20.
What is a z-distribution confidence interval?
The confidence interval is:
[tex]\overline{x} \pm z\frac{\sigma}{\sqrt{n}}[/tex]
In which:
- [tex]\overline{x}[/tex] is the sample mean.
- z is the critical value.
- n is the sample size.
- [tex]\sigma[/tex] is the standard deviation for the population.
The margin of error is given by:
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
Scores on the math portion of the SAT are believed to be normally distributed and range from 200 to 800, hence by the Empirical Rule the standard deviation is given by:
[tex]6\sigma = 800 - 200[/tex]
[tex]\sigma = 100[/tex]
In this problem, we have a 95% confidence level, hence[tex]\alpha = 0.95[/tex], z is the value of Z that has a p-value of [tex]\frac{1+0.95}{2} = 0.975[/tex], so the critical value is z = 1.96.
To ensure a margin of error of 20, we solve for n when M = 20, hence:
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
[tex]20 = 1.96\frac{100}{\sqrt{n}}[/tex]
[tex]20\sqrt{n} = 1.96 \times 100[/tex]
[tex]\sqrt{n} = 1.96 \times 5[/tex]
[tex](\sqrt{n})^2 = (1.96 \times 5)^2[/tex]
n = 96.04.
Rounding up, she should take a sample of 97 scores to ensure that the margin of error is below 20.
More can be learned about the z-distribution at https://brainly.com/question/25890103
#SPJ1
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.