Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Is it true that: If f"(c) > 0, then the slope of
the tangent line to the graph of the function at
x = c is positive.


Sagot :

Answer:

yes

Step-by-step explanation:

the FIRST derivative of a function tells us the slope of a tangent line to the curve at any point. if is positive, then the curve must be increasing. If is negative, then the curve must be decreasing.

the SECOND derivative gives us the slope of the slope function (in other words how fast the slope of the original function changes, and if it is accelerating up - positive - or if it is avengers down - negative).

so, the first derivative would be fully sufficient to get the answer of if the slope of the function at that point is positive or negative.

but because it is only a "if" condition and not a "if and only if" condition, the statement is still true.

there are enough cases, where the slope is positive, but the second derivative is not > 0 (usually = 0).

but if even the second derivative is positive, then, yes, the slope of the original function must be positive too.

Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.