Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

The functions f(x) = x2 – 2 and g(x) = –x2 + 5 are shown on the graph.

The graph shows f of x equals x squared minus 2, which is an upward opening parabola with a vertex at 0 comma negative 2 and a point at negative 1 comma negative 1 and a point at 1 comma negative 1. The graph also shows g of x, which is a downward opening parabola with a vertex at 0 comma 5 and a point at negative 1 comma 4 and a point at 1 comma 4.

Explain how to modify the graphs of f(x) and g(x) to graph the solution set to the following system of inequalities. How can the solution set be identified?

y > x2 – 2
y ≥ –x2 + 5


Sagot :

We will need to shade the region above f(x) and the region below the function g(x)…

How to transform the graph into the solution set?

We have:

f(x) = x² - 1

g(x) = -x² + 4

Both of these are already graphed, and we want to transform it into:

y > f(x)

y ≤ g(x)

The first inequality means that we need to graph f(x) with a dashed line, because f(x) is not part of the solution, and then we shade all the region above f(x)…

For the other inequality, we use a solid line (because the points on the line are solutions) and then we shade the part below the curve…

If you want to learn more about inequalities, you can read:

brainly.com/question/18881247

Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.