Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
[tex]\dfrac{x!-(x-3)!}{23}=1\\x!-(x-3)!=23\\(x-3)!((x-2)(x-1)x-1)=23\\(x-3)!((x^3-x^2-2x^2+2x)-1)=23\\(x-3)!((x^3-3x^2+2x)-1)=23[/tex]
23 is a prime number, therefore there are two possibilities:
[tex]\text{I.}\, (x-3)!=1 \wedge x^3-3x^2+2x-1=23[/tex]
or
[tex]\text{II.}\, (x-3)!=23 \wedge x^3-3x^2+2x-1=1[/tex]
[tex]\text{I.}\\(x-3)!=1\\x-3=0 \vee x-3=1\\x=3 \vee x=4[/tex]
Now, we check if any of these solutions is also a solution to the second equation:
[tex]3^3-3\cdot3^2+2\cdot3-1=23\\27-27+6-1-23=0\\ -18=0[/tex]
Therefore, 3 is not a solution.
[tex]4^3-3\cdot4^2+2\cdot4-1=23\\64-48+8-1-23=0\\0=0[/tex]
Therefore, 4 is a solution.
[tex]\text{II.}[/tex]
[tex](x-3)!=23[/tex]
We know that [tex]3!=6[/tex] and [tex]4!=24[/tex], therefore there isn't any [tex]n\in\mathbb{N}[/tex], for which [tex]n!=23[/tex], so there's no solution.
So, the only solution is [tex]x=4[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.