Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Answer:
31
Step-by-step explanation:
We can solve the given equation for 'b', then find the integer values of 'a' that make 'b' a positive integer. There are 3 such values. One of these minimizes the objective function.
__
solve for b
ab +5b = 373 +6a . . . . . . isolate b terms by adding 6a
b = (6a +373)/(a +5) . . . . . divide by the coefficient of b
b = 6 +343/(a +5) . . . . . . . find quotient and remainder
integer solutions
The value of 'b' will only be an integer when (a+5) is a factor of 343. The divisors of 343 = 7³ are {1, 7, 49, 343}. so these are the possible values of a+5. Since a > 0, we must eliminate a+5=1. That leaves ...
a = {7, 49, 343} -5 = {2, 44, 338}.
Possible values of b are ...
b = 6 +343/{7, 49, 343} = 6 +{49, 7, 1} = {55, 13, 7}
Then possible (a, b) pairs are ...
(a, b) = {(2, 55), (44, 13), (338, 7)}
objective function
The values of the objective function for these pairs are ...
|a -b| = |2 -55| = 53
|a -b| = |44 -13| = 31 . . . . . the minimum value of the objective function
|a -b| = |338 -7| = 331
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.