Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
The value of the probability P(x > 2) is 0.8369
How to evaluate the probability?
The given parameters are:
n = 5
p =0.7
The probability is calculated as:
[tex]P(x) = ^nC_x *p^x * (1 - p)^x[/tex]
Using the complement rule, we have:
P(x > 2) = 1 - P(0) - P(1) - P(2)
Where:
[tex]P(0) = ^5C_0 *0.7^0 * (1 - 0.7)^5[/tex]
P(0) = 1 *1 * (1 - 0.7)^5 = 0.00243
[tex]P(1) = ^5C_1 *0.7^1 * (1 - 0.7)^4[/tex]
P(1) = 5 *0.7^1 * (1 - 0.7)^4 = 0.02835
[tex]P(2) = ^5C_2 *0.7^2 * (1 - 0.7)^3[/tex]
P(2) = 10 *0.7^2 * (1 - 0.7)^3 = 0.1323
Recall that:
P(x > 2) = 1 - P(0) - P(1) - P(2)
So, we have:
P(x > 2) = 1 - 0.00243 - 0.02835 - 0.1323
Evaluate
P(x > 2) = 0.83692
Approximate
P(x > 2) = 0.8369
Hence, the value of the probability P(x > 2) is 0.8369
Read more about probability at:
https://brainly.com/question/25870256
#SPJ1
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.